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One of most intellectually interesting problems in plasma physics is the problem of turbulence and the associated transport 
of the plasma properties including density, temperature and momentum. The aim of this paper is to determine the transport 
coefficients in plasma particularly electrical and thermal conductivities by Extended Irreversible Thermodynamics (EIT). 
Transport coefficients are determined for different types of particles electrons and ions. 
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1. Introduction 
  
Understanding turbulent transport in magnetized 

plasma is a subject of utmost importance for 
comprehending and optimizing experiments in present 
fusion devices and for designing future reactors, too [1-2]. 

The fundamental properties of plasma are markedly 
dependent upon the interactions of the plasma particles 
with the force fields existing inside it.  Processes related to 
the transport of mass, momentum, energy and charges in 
plasma are generally called transport phenomena. There 
exist general equations describing these different 
phenomena, and the special effects are characterized by 
coefficients generally called transport coefficients [3]. 

Understanding and controlling the rate at which 
particles and heat escape from the reactor chamber is 
critical to the successful design and operation of a 
magnetic fusion device. In the early days of the fusion 
program, estimates of particle and heat transport based on 
simple collisional diffusion were made. However, these 
estimates were found to drastically under-predict the 
observed in experiments and the large measured transport 
was labeled “anomalous”. Understanding this anomalous 
transport has been a primary goal of the fusion program 
ever since [4-5]. 

Recent descriptions of heat and particles transport in 
plasma have opened a promising field of application for 
Extended Irreversible Thermodynamics. 

It has been shown that the so-called extended 
irreversible thermodynamics (EIT) attempts to cover those 
nonequilibrium situations which are supposed as not 
covered by local equilibrium assumption [6–8]. 

The basic features of this formalism and several 
applications are reviewed. Extended irreversible 
thermodynamics includes dissipative fluxes (heat flux, 
viscous pressure tensor, electric current) in the set of basic 
independent variables of the entropy [9]. 

This is achieved in EIT by enlarging the space of 
fundamental independent variables, such as the dissipative 

fluxes; say the heat flux density, dissipative stress tensor 
etc [10-11] 

A new formulation of nonequilibrium 
thermodynamics is based on the postulate that the entropy 
density (S) is a function of both ordinary thermodynamic 
variables and certain additional variables (heat flux, 
particle flux, etc.) [12-14]  

The purpose of this paper is to determine the parallel 
and the perpendicular transport coefficients in plasma. In 
the second section we write the fundamental hypotheses of 
EIT and the corresponding evolution equations for the 
fluxes. In the third section, we develop the transport 
equations of particle and heat fluxes and we determine the 
parallel and perpendicular transport coefficients for 
multispecies of plasma (electrons and ions).  

In the last section we comment the result obtained 
from graphical representation.  

 
2. Generalized Gibbs equation 
  
As in classical irreversible thermodynamics (CIT), the 

entropy and the Gibbs equation play a central role in 
extended irreversible thermodynamics (EIT). Here, it is 
assumed that the entropy will not only depend on the 
classical variable, namely the specific internal energy , 
but in addition on the dissipative flux, so the generalized 
Gibbs equation takes the form [15-17] 

 

( ) ( )

aa
a e

aa a a
a

a a a a a a a a a a
1 1 1 2 2 1 2 2

µd U 1d S = - d e -
T T ρ T

α + α .d q + α + α d⎡ ⎤
⎣ ⎦q j q j j

       (1) 

 
Where U is the internal energy, eµ the chemical potential, 

 phenomenological coefficient, ae  total electric charge 

contributed by particle a, aj particle flux, aq  heat flux and   

aT is the absolute temperature of particle α . 
The balance equations of total electric charge contributed 
by particle a and internal energy are given by: 
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                                  a a
t aρ e =- .q ∇ j                               (2) 

With aρ  is the total mass density of particle a 
 
                   a a a a

tU . .Eρ ∂ = −∇ +q j                           (3)                                                       
                             
Here E and aj . E are respectively the electric field and the 
joule heating term. 
In virtue of the balance equations (2) and (3) for U and ae  
, one obtains for the entropy balance 

  
a a a

a a a 1e 11 21
t a

a a a a

a a aa
a e 12 22

a a a a

1 d dS . . T
T T T dt T dt

d d.
T T T dt T dt

−⎛ ⎞ ⎛ ⎞µ α α
ρ ∂ + ∇ − = ∇ − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞µ α α

− ∇ − −⎜ ⎟
⎝ ⎠

a a
a

a a

q jq j q

E q jj

(4)     

                                                                                                                                                                                    
This equation can be cast in the general form of a balance 
equation                           

                        a aS .ρ = −∇ +σj                        (5) 
 

Where the quantity aσ is the entropy production 

( )a 0σ >  and  aj  is the entropy flux.                                                       

The entropy production obeys 
             

a a a a a a a a a
11 12 21 22. . . .σ = µ +µ +µ +µq q j q q j j j (6) 

 
The coefficient ij 0µ >  is a consequence of the 

entropy production with aσ is positive ( )a 0σ > . 

Considering equations (4) and (5), we obtain the 
simplest evolution equations for aq and aj compatible 
with a definite positive entropy production, one assumes 
linear relations between the thermodynamic forces and the 
fluxes aq and aj . This result in 

a aa a a
a a a a aa 12
22 21 22

a a a

d d
T T T dt dt

µ α
−∇ − −α = µ +µ

E q j q j  ሺ7ሻ         

a aa a
1 a a a a11 21

a 11 12
a a

d dT
T dt T dt

− α α
∇ − − = µ +µ

q j q j               (8) 

Let us assume that  1
aT−∇  and   

aa
a

a a

E
T T

µ
−∇    vanish 

in system of equation (7) and (8), so that they refer to 
fluctuations near an equilibrium state. The equations (7) 
and (8) become:  

     
a aa a

a a a a12 22
21 22

a a

d d
T dt T dt
α α

− − = µ +µ
q j q j                   (9) 

     
a aa a

a a a a11 21
11 12

a a

d d
T dt T dt
α α

− − = µ +µ
q j q j               (10) 

After resolution of equations (9) and (10) we have 

( )( )
a a1Ta at
a a

t

T . .
−⎛ ⎞ ⎛ ⎞∂

= − α µ⎜ ⎟ ⎜ ⎟
∂ ⎝ ⎠⎝ ⎠

q q
j j

              (11) 

This is equivalent to  

          11 21 12 11 11 22 12 12
t

11 22 12 21 11 22 12 21

a a
1 2

T . T .

k . k .

⎛ ⎞ ⎛ ⎞α µ −α µ α µ −α µ
∂ = − −⎜ ⎟ ⎜ ⎟α α −α α α α −α α⎝ ⎠ ⎝ ⎠

= +

a a aj q j

q j

  (12)    

22 11 21 21 22 12 21 22
t

11 22 12 21 11 22 12 21

a a
3 4

T . T .

k . k .

⎛ ⎞ ⎛ ⎞α µ −α µ α µ −α µ
∂ = − −⎜ ⎟ ⎜ ⎟α α −α α α α −α α⎝ ⎠ ⎝ ⎠

= +

a a aq q j

q j

 (13)          

 
3. Parallel transport coefficients of Plasma   
 
We Consider plasma where the particles (electrons (e) 

, ions (i), move parallel to the magnetic fields. 
The generalized Gibbs equation (1) becomes: 

( ) ( )( )

aa
e

a e,i a e,i a a e,i
a a a a

ab a ab a b ab a ab a b
b e,i 11 12 21 22

dU 1dS de (14)
T T T

.d .d

= = =

=

µ
= − −

ρ

⎡ ⎤α +α + α +α⎣ ⎦

∑ ∑ ∑

∑ q j q q j j

                   
And the evolutions equations (12) and (13) of the fluxes 
can be written  

( )a ab b ab b
t 1 2b e,i

k . k .
=

∂ = +∑j q j                        (15)  

   

( )a ab b ab b
t 3 4b e,i

k . k .
=

∂ = +∑q q j                      (16) 

 
Considering equation (12) and (13) the 
coefficients ab

1k ,
ab
2k ,

ab
3k ,

ab
4k  are   given by 
 

ab b ab b
ab 11 21 12 11
1 a ab ab ab ab

11 22 12 21

k T
⎛ ⎞α µ −α µ

= − ⎜ ⎟α α −α α⎝ ⎠
 

 
ab b ab b

ab 11 22 12 12
2 a ab ab ab ab

11 22 12 21

k T
⎛ ⎞α µ −α µ

= − ⎜ ⎟α α −α α⎝ ⎠
 

ab b ab b
ab 22 11 21 21
3 a ab ab ab ab

11 22 12 21

k T
⎛ ⎞α µ −α µ

= − ⎜ ⎟α α −α α⎝ ⎠
 

ab b ab b
ab 21 22 22 12
4 a ab ab ab ab

11 22 12 21

k T
⎛ ⎞α µ −α µ

= − ⎜ ⎟α α −α α⎝ ⎠
 

 
The coefficients   b

ijµ  are given by  

( )

( )( )

b b
b b
11 11b 2 b 2

b b

b bb t
e eb b

11 22b 2 b 2 b 2
b b b

1 ,
T T

TT 1,
T T T

− Π +µ
µ = µ =

λ λ

Π +µ µ −ε −µ
µ = µ = +

λ λ σ

 

 
With 
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B

2 2 b
b b bb b b b b

b b
2 22 2

bb bB b
2 b 2 b
b F b F

5n k T n e,
2m m

kk T ,
2e 2e

τ
λ = τ σ =

π τπ
Π = ε =

ε ε

 

 
3
2

b B b
B b

b b

2 k T1k T log
n m

⎛ ⎞
⎛ ⎞π⎜ ⎟µ = ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

 

Where bτ  bn   and  Bk  are respectively the relaxation 
time of particle b, the particle b density and the Boltzmann 
constant. 
Determination of the coefficients ab

ijα  [18] 
 

  

ab abB B
11 12a b a b

ab abB B
21 22a b a b

k k;

k k;

α = α =
δ δ δ δ

α = α =
δ δ δ δ

q q q j

j q j j

      (17) 

         
With a∂q  is the fluctuation of the heat flux, a∂j is the 
fluctuation of the particle flux.  

Determination of  ab
ijα  : 

The fluctuations of the heat flux are given   
 

a 2 a
B

1 5mC k T C f
2 2

⎛ ⎞δ = − δ⎜ ⎟
⎝ ⎠∫q                  (18) 

 
Using this expression, frequently called the subtracted heat 
flux, to compute the second moments of the fluctuations, 
one finds that: 
 

a b ' 2 '2 '
a B a b B b

a b '

1 5 1 5dc dc m C k T C m C k T C
2 2 2 2

f (C) f (C )

⎛ ⎞ ⎛ ⎞δ δ = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

δ δ

∫ ∫q q     (19)   

a b ' ' 2 '
b B b

a b '

1 1 5d c d c ( C m C k T C C
2 2 2

f (C ) f ( C )

⎛ ⎞δ δ = −⎜ ⎟
⎝ ⎠

δ δ

∫ ∫j q              (20)  

                                                           

( ) ( )

a b ' '2 '
b b bb

a b '

1 1 5dc dc C C CC
2 2 2

f C f C

e m K T⎛ ⎞⎛ ⎞δ δ = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

δ δ

∫ ∫q j                 (21) 

 
( ) ( )a b ' ' a b '

a b
dc dc CC f C f Ce eδ δ = δ δ∫ ∫q j          (22) 

Where   C c= −ν    the particle velocity relative to the 
mean motion, with   is the velocity of a particle,   is the 
mean velocity. 
 

 ( ) ( ) ( ) ( )a b '
eq

1f C f C C C C
v fδ δ = δ −     (23) 

Where V is the volume of the system 
 

The local equilibrium Maxwell-Boltzmann distribution 
function  feq 

3
2 2

eq
b B

m mCn exp
2 T 2 Tf K K

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟π ⎝ ⎠⎝ ⎠

 

 
After calculations, we found that   

( )( )13 2
B a b a bab

11

5 5
b b

2 3 2 3
a b a b

7 5 5 3
2 2 2 22 2 2 2

b b b b

a a a a

48V K 5n n T T

3 33 5

1 1 1 1

π π
=
⎡ ⎤
⎢ ⎥

β β⎢ ⎥
β β β β⎢ ⎥− − +⎢ ⎥

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞β β β β⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟β β β β⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

α

 

( )

33 2ab B
12

3
b a b a b 5 3

2 22 2
b b

a a

24V K

3 5e n n T

1 1

π
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥πβ −⎢ ⎥
⎛ ⎞ ⎛ ⎞⎢ ⎥⎛ ⎞ ⎛ ⎞β β⎜ ⎟ ⎜ ⎟+ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟β β⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

α

 

( )

33 2ab B
22

3
a a b b a 5 3

2 22 2
a a

b b

24V K

3 5e n n T

1 1

π
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥πβ −⎢ ⎥
⎛ ⎞ ⎛ ⎞⎢ ⎥⎛ ⎞ ⎛ ⎞β β⎜ ⎟ ⎜ ⎟+ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟β β⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

α

 

 

( )

33 2 22 2ab b aB
22 3

b ba b a b a

2 T12VK 1
me n n T

⎛ ⎞⎛ ⎞ ⎛ ⎞π β⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟βπβ ⎝ ⎠ ⎝ ⎠⎝ ⎠
α  

 

With:     

1
2

a
a

a

m
2T

⎛ ⎞
β = ⎜ ⎟

⎝ ⎠
      and     

1
2

b
b

b

m
2T

⎛ ⎞
β = ⎜ ⎟

⎝ ⎠
 

Here a am ,n , V    and a 'e    are respectively the mass, 
the density of particle a, volume of the system and the 
charge of particle a . 

The state of the plasma after a short transition time 
remains close to the local plasma equilibrium. For this 
reason, the local plasma equilibrium will be a reference 
state. The distribution function can the conveniently be 
written in the form: [17] 
 

a a a
0 1f f f= +                                     (24)          

 
With a

1f  is a deviation of distribution function, and then 
can be expanded in a series of irreducible Hermite 
polynomial as  
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( ) ( ) ( ) ( )a 2n 1 2n 1a a
1 r 0

n 0
f h H v f v+ +

=

= ∑                     (25)                               

 
With  ( )a 2n 1h +  the hermitien moment and ( )2n 1

rH +  the 
irreducible Hermite polynomials 
We limited in the 13 Moment approximation (n=1) so  
 
                  ( ) ( )( )a 1 a 3a a (1) a(3) a

1 r r r r 0f h H h H f= +                        (26) 

 
With            ( )a 1

r aH 2 C= β   

 And            ( ) ( )2a a
r a a

1H C 2 C 5
5

⎡ ⎤= β β −⎣ ⎦
 

We derive a relation between the heat flux and the 
hermitien moments in order to determine the 
dimensionless equations of fluxes 

  ( )

1
2

a 1 aa
r r

a a

m1h j
n T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                             (27) 

( )

1
2

a 1 aa
r r

a a a

m2 1h q
5 n T T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                     (28) 

 
Where ( )a 1

rh and ( )a 3
rh  are respectively the dimensionless 

particle flux and the dimensionless heat flux of particle  
( . 
 

The evolution equations of the fluxes j and q have the 
forms 
 

( )a a
t t aj e Cf dC∂ = ∂ ∫                               (29)                              

a 2 a
t t a B

1 5q m C K T Cf dC
2 2

⎛ ⎞⎛ ⎞∂ = ∂ −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∫          ሺ30ሻ                                       

 
By considering the equations (26) and (27), the equations 
(28) and (29) can be written 
 

  ( ) ( ) ( ) ( )
a

a 1 a 1 a 1 a 1a a
t r r r rmn r

a

eh h G h B
m c
τ

τ ∂ + = + ε          (31)                                      

( ) ( ) ( ) ( )
a

a a a 1 a a a aa a
t r r r rmn r

a

eh h G h B
m c
τ

τ ∂ + = + ε        (32) 

 
Where aτ  the relaxation time of particlea,  B  the 
magnetic field. 
With  ( )a a

rG  and ( )a 3
rG  are the source term related to the 

thermodynamic forces by relation  
 

( ) ( )
1

2
a 1 a a a
r a r a a r

a a a a

m e n1 1G n T
n T m m

⎛ ⎞ ⎛ ⎞
= τ ∇ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
E      (33) 

( ) ( )
1

2
a a a
r a r a

a a

m5 1G T
2 T m
⎛ ⎞

= −τ ∇⎜ ⎟
⎝ ⎠

          (34) 

 
Considering equations (12) and (13) the evolution 
equations of particle and heat flux has the form 
 

( )a a b b a b b
t 1 2

b e , i
k . k

=

∂ = +∑j q j             (35)    

 
( )a ab b ab b

t 1 4
b e ,i

k . k
=

∂ = +∑q q j                (36) 

 
So the dimensionless equations of particle and heat fluxes 
in parallel direction become:  
 

         ( ) ( ) ( )( )b 1 b 3 b 1'ab ab
t / / 1 / / 4 / /

b e,i
h k h k h

=

∂ = +∑        (37) 

 
( ) ( ) ( )( )a 3 b 3 b 1'ab 'ab

t / / 1 / / 4 / /
b e,i

h k h k h
=

∂ = +∑          (38) 

 With: 
1
2

'ab abb a b
1 b 1

a b a

n m T5k T k
2 n m T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

1
2

'ab abb a b
2 2

a b a

n m Tk k
n m T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

1
2

'ab abb a b
3 b 3

a b a

n m T5k T k
2 n m T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

1
2

'ab abb a b
4 4

a b a

n m Tk k
n m T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

 
The dimensionless evolution equation (31) of particle 

flux  in parallel direction became 
 

                     ( ) ( ) ( )a 1 a 1 a 1a
t / / / / / /h h Gτ ∂ + =                       (39) 

 
Where the term of magnetic field vanish                                                   
 
For electrons (e), the equation (39) become  
 

( ) ( ) ( )e 1 e 1 e 1e
t / / / / / /h h Gτ ∂ + =                    (40) 

  
The expression of electron relaxation time eτ  is [19] 
 

31
2 2

2 4

3
4 2 ln

e e e

i

m T
Z e n

τ
π

=
Λ

                            (41) 

   

Where 
2

3 ( )2ln ln e i DT T

Ze

λ+
Λ =  the coulomb logarithm, 

and Dλ  is the Debye length. 



1320                                          R.  Moultif, A. Dezairi, D. Saifaoui, J. Louafi, S. Mizani, R. Elaouni 
 

       We replace (1)e e
t rhτ ∂  in equation (40) by its 

expression from equation (37), we find: 
 

' (3) ' (1) (1) (1)
1 / / 2 / / / / / /

,
( )e ab b ab b e e

b e i
k h k h h Gτ

=

+ + =∑      (42) 

This is equivalent to:  
 

' (3) ' (1) ' (3) ' (1) (1)
1 / / 2 / / 1 / / 2 / / / /

(1)
/ /

e ee e e ee e e ei i e ei i e

e

k h k h k h k h h

G

τ τ τ τ+ + + +

=
        (43)                                                                                           

  Considering Fourier transformed  
(1) (1)

/ / / /
(3) (3)

/ / / /

b b
t

b b
t

h i h

h i h

ω

ω

∂ =

∂ =
 

We place in the asymptotic limit where we neglect t rh∂ , 

with we take 0ω = , the evolutions equations (43) reduces 
to 
  

 (1) (1) (3) (1) (3)
/ / 11 / / 13 / / 11 / / 13 / /
e ee e ee e ei i ei ih L G L G L G L G= + + +    (44)    

 
Similar for ions (i) we determine  (1)

/ /
ih   

(1) (1) (3) (1) (3)
/ / 11 / / 13 / / 11 / / 13 / /
i ie e ie e ii i ii ih L G L G L G L G= + + +       (45)                            

                                
The  aa

ijL  coefficients with (a=e,i and i=1 j=1,3) are the 

pure transport coefficients and  ab
ijL  (a, b= e, i) with (a ≠ 

b)) the mixed transport coefficients. 
 

Similar of particle flux we develop now the 
dimensionless evolution equation of heat flux of 
multispecies of plasma so we have 

(3) (1) (3) (1) (3)
/ / 31 / / 33 / / 31 / / 33 / /
e ee e ee e ei i ei ih L G L G L G L G= + + +      (46) 

 
(3) (1) (3) (1) (3)

/ / 31 / / 33 / / 31 / / 33 / /
i ie e ie e ii i ii ih L G L G L G L G= + + +      (47)  

 
Identification of the transport coefficients 
 
The transport matrix ab

ijL  (whose coefficients are the 
transport coefficients) has the characteristic Onsager 
symmetry, which reduces here to the simple matrix 
symmetry    ab

ijL = ab
jiL    so  

 
The pure transport coefficients have the form 
 

   11 '
2

1
1

ee
e eeL
kτ

=
+

     ,          
'
1

13 '
21

e ee
ee

e ee

kL
k

τ
τ

= −
+

 

     33 '
2

1
1

ii
i iiL
kτ

= −
+

           ,          
'
1

13 '
21

i ii
ii

i ii

kL
k

τ
τ

= −
+

, 

     33 '
2

1
1

ee
e eeL
kτ

= −
+

 

With the expression of ion relaxation time is 

              

31
2 2

2 4

3
4 2 ln

i i i

i

m T
Z e n

τ
π

=
Λ

                       (48) 

 
Where    and are respectively the mass of ion, the 
charge and the ion temperature.  
 

           The mixed transport coefficients 
' '
2 4

11 31' '
2 3

'
3

33 '
3

,
1 1

1

e ei e ei
ei ei

e ee e ee

e ei
ei

e ee

k kL L
k k

kL
k

τ τ
τ τ

τ
τ

= − = −
+ +

= −
+

 

 
4. The perpendicular transport coefficients of  
     plasma   
 
In this paragraph we study the transport phenomena in 

presence of a constant magnetic field (B) where the 
particles (electrons (e), ions (i)), move perpendicular to the 
magnetic fields. 

B is parallel to the Z axis so we project the 
dimensionless evolution equations in the x and y direction   

 
For particle fluxes  
 
We determine now the dimensionless evolution 

equation of particle flux of multispecies of plasma so we 
have 
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We suppose    
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a
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is the Larmor frequency of species a, a=(e,i)  and B is the 
magnetic field 
After introducing (50) in (49)   we use   
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 For ions 
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     For heat fluxes 

 
Similar of particle flux we develop now the 

dimensionless evolution equation of heat flux of 
multispecies of plasma so we have 
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After introducing (56) in (55)   we use 
 
For electrons 
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  For ions    
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5. Result and discussion 
 
In Figs. 1-4 we plotted the perpendicular electrical 

conductivity, the thermoelectric conductivity, and electron 
and ion thermal conductivities as function of   .  
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Fig. 1.  Perpendicular electrical conductivity 
as function of  . 

 
This plot show that the electrical conductivity 

decreases with increasing of  
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Fig. 2.  Perpendicular electron thermal conductivity 

as function of  . 
 

We notice that the perpendicular electron thermal 
conductivity decreases with increasing of . 
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Fig. 3.  Perpendicular thermoelectric conductivity 

as function of   . 
 

We notice that the perpendicular thermoelectric 
conductivity increases with increasing of . 
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Fig. 4. Perpendicular ions thermal conductivity 

as function of   . 
 

In this curve we plotted the perpendicular ions 
thermal conductivity as function of.  This plot shows 
that the perpendicular ions thermal conductivity decreases 
with increasing of     

The perpendicular transport coefficients are 
monotonously decreasing function of   . So for a very 
strong magnetic field, the particles would stick to the field 
lines, and there would be no transport in any direction 
perpendicular to (B). This situation is opposed by the 
collisions the latter make the particles jump from one field 
line to another, thus making a perpendicular transport 
possible. In the perpendicular direction the collisions favor 
the transport thus for large values of the parameter  

a a ax τ= Ω  i.e. for large magnetic field the 
coefficients are decreasing functions of . This situation 
is clearly illustrated in Figs. 1-4. 
 

6.  Conclusion 
           
In this paper we have been interested to calculate by 

Extended Irreversible Thermodynamics the transport 
coefficients like electrical and thermal conductivities after 
developing transport equations of dissipative fluxes like 
particles and heat fluxes of multispecies plasma (electron 
and ions). 

In absence of magnetic field all the transport 
coefficient are proportional to the relaxation time this 
important characteristic can be easily understood. It 
implies that as the collision frequency increases the 
transport coefficients decrease in order words, the 
collisions tend to oppose the transport of matter and 
energy; they act as an obstacle to the free flow of these 

quantities. This result is in perfect agreement with kinetic 
theory result [20-21]. 

The asymptotic perpendicular transport coefficients 
are proportional to the collision frequency this property 
vividly illustrates that the collisions oppose the parallel 
transport but favor the perpendicular one. It may be said 
that in plasma in presence of a constant magnetic field, 
when the collision frequency is increased  

And the equality such coefficients, which has been 
obtained here from purely EIT, is supported by kinetic 
theory. 
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