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Study of transport phenomena in plasma by extended
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One of most intellectually interesting problems in plasma physics is the problem of turbulence and the associated transport
of the plasma properties including density, temperature and momentum. The aim of this paper is to determine the transport
coefficients in plasma particularly electrical and thermal conductivities by Extended Irreversible Thermodynamics (EIT).
Transport coefficients are determined for different types of particles electrons and ions.
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1. Introduction

Understanding turbulent transport in magnetized
plasma is a subject of utmost importance for
comprehending and optimizing experiments in present
fusion devices and for designing future reactors, too [1-2].

The fundamental properties of plasma are markedly
dependent upon the interactions of the plasma particles
with the force fields existing inside it. Processes related to
the transport of mass, momentum, energy and charges in
plasma are generally called transport phenomena. There
exist general equations describing these different
phenomena, and the special effects are characterized by
coefficients generally called transport coefficients [3].

Understanding and controlling the rate at which
particles and heat escape from the reactor chamber is
critical to the successful design and operation of a
magnetic fusion device. In the early days of the fusion
program, estimates of particle and heat transport based on
simple collisional diffusion were made. However, these
estimates were found to drastically under-predict the
observed in experiments and the large measured transport
was labeled “anomalous”. Understanding this anomalous
transport has been a primary goal of the fusion program
ever since [4-5].

Recent descriptions of heat and particles transport in
plasma have opened a promising field of application for
Extended Irreversible Thermodynamics.

It has been shown that the so-called extended
irreversible thermodynamics (EIT) attempts to cover those
nonequilibrium situations which are supposed as not
covered by local equilibrium assumption [6—8].

The basic features of this formalism and several
applications are reviewed. Extended irreversible
thermodynamics includes dissipative fluxes (heat flux,
viscous pressure tensor, electric current) in the set of basic
independent variables of the entropy [9].

This is achieved in EIT by enlarging the space of
fundamental independent variables, such as the dissipative

fluxes; say the heat flux density, dissipative stress tensor
etc [10-11]

A new formulation of nonequilibrium
thermodynamics is based on the postulate that the entropy
density (S) is a function of both ordinary thermodynamic
variables and certain additional variables (heat flux,
particle flux, etc.) [12-14]

The purpose of this paper is to determine the parallel
and the perpendicular transport coefficients in plasma. In
the second section we write the fundamental hypotheses of
EIT and the corresponding evolution equations for the
fluxes. In the third section, we develop the transport
equations of particle and heat fluxes and we determine the
parallel and perpendicular transport coefficients for
multispecies of plasma (electrons and ions).

In the last section we comment the result obtained
from graphical representation.

2. Generalized Gibbs equation

As in classical irreversible thermodynamics (CIT), the
entropy and the Gibbs equation play a central role in
extended irreversible thermodynamics (EIT). Here, it is
assumed that the entropy will not only depend on the
classical variable, namely the specific internal energy u,
but in addition on the dissipative flux, so the generalized
Gibbs equation takes the form [15-17]

. dU® pu? 1
ds®= -Eege - 1
T+ O p.T* W

=
[(ata*+apit).da*+ (a3 +alj* )dj* |

Where U is the internal energy, L, the chemical potential,
o phenomenological coefficient, €, total electric charge
contributed by particle a, j* particle flux,q" heat flux and

T, is the absolute temperature of particle O..

The balance equations of total electric charge contributed
by particle a and internal energy are given by:
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p'ae, =V j* )
With p® is the total mass density of particle a

p'0,U' =-V.q' +j' E 3)

Here E and | . E are respectively the electric field and the
joule heating term.

In virtue of the balance equations (2) and (3) for U and €®
, one obtains for the entropy balance

_oi dg® o, E]+(4)

1 p _
9S+V.| —q'-==j* |=q*.| VT,
e [Tq J]q[“ T, dt T, dt

T
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a

This equation can be cast in the general form of a balance
equation

pS=-V.j' +c° 5)

Where the quantity G°is the entropy production
(Ga > 0) and j* is the entropy flux.
The entropy production obeys

c'= l-1~11(:]a-qal + Mnja-qdl + ana-r1 + szja-ja (6)

The coefficient pij>0 is a consequence of the
entropy production with G” is positive (Ga > 0) .
Considering equations (4) and (5), we obtain the

simplest evolution equations for ("and J compatible

with a definite positive entropy production, one assumes
linear relations between the thermodynamic forces and the

fluxes “and J* . This result in

E* * ool dg? a dj* a ~a a ra
_vua L & ) ™+l (7)

T T T, dt 2 dt
4 ooaf, dgt o, djf .

A0 e B B W NPVLNC ST 8
a T dt T, dt [SRL0 I VPPN | (3)

B Ea a
Let us assume that VT, "and — -V Ha
T T

a a

vanish

in system of equation (7) and (8), so that they refer to
fluctuations near an equilibrium state. The equations (7)
and (8) become:

_ 2 M P2 M) aya + a za 9
T d T, dt Mo +1y) ©))

a?l dqa (1;1 dja a ~a a za
L - 10
T dt T, d e (10

After resolution of equations (9) and (10) we have

ey elg)

This is equivalent to
o, sz[ Oy — Oy ]_qa 7T( Oy —OpHyy }Ja (12)

O Oy = 0y, O 0y = Oy 0y,

~k g

6lqa — —T[ Olpabbyp — Oy Hy ).qa _T(azzulz — Oy, j_ja (13)

OOy = 00y, OOy =0y 0,

=k, q" +k,.J°
3. Parallel transport coefficients of Plasma

We Consider plasma where the particles (electrons (e)
, ions (i), move parallel to the magnetic fields.
The generalized Gibbs equation (1) becomes:

du* : 1
dS = Z a=e,i T - Z a=e,i %dea - Z a=e,i p7T (1 4)

aa

(3 (ot + ot )da* + (ot + o) )|

And the evolutions equations (12) and (13) of the fluxes
can be written

00 = (kA k) (15)
00 =, (kg +Ky ) (16)
Considering equation (12) and (13) the

. b b p.ab 7.ab .
coefficients k" k3 k3 ki are given by

ab b ab b
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11%22 12091
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The coefficients pg are given by

b b
W = 1 “b:_(n +H)
AT »o APT?
b b
o T o (M) (=T )+ 1
ot T APT? c"T?
With
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2P = 5nk;T, o o° = n,e;t"
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2 2
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2ele) ’ 2elel

3

1 ( 2nk,T, |2
n" =k,T, log [Bbj

Oy my

Wheret, n, and Kk are respectively the relaxation

time of particle b, the particle b density and the Boltzmann
constant.

Determination of the coefficients chb [18]

ab __ kB . ab __ kB
n = aqb 2= asib
e’ W),
ab kB ab kB
Oy =7 ; Oy =7
21 <8jd8qb> 22 <8jd8jb>
With 0g" is the fluctuation of the heat flux, 0]"is the

fluctuation of the particle flux.
Determination of a;b :

The fluctuations of the heat flux are given
5q° = [ e 221, 1 [osre (18)
2 2°°

Using this expression, frequently called the subtracted heat
flux, to compute the second moments of the fluctuations,
one finds that:

(80%8q" ) = Idcjdc( m, CZ—Ek T ]C(%mhc'z—ngTbJC‘ (19)

(5*(C)3f*(C))

(8i*5q") = jdcjdc( C(z m,C? —%kBThJCC' (20)
(3£ (C)8£°(CH)
<5q“5jb>:ebjdcjdc‘[% {2mbc KbTb)CCj @
(81 (c)3r ()
(5q°01") = g, ¢, [ defdecC (36* (C)st* (C'))  (22)
Where C=c—V the particle velocity relative to the

mean motion, with ¢ 1is the velocity of a particle, 1 is the
mean velocity.

(st* (C)8t" (') = %feq(C)S(C—C) (23)

Where V is the volume of the system

The local equilibrium Maxwell-Boltzmann distribution

function f,
3
m 2 mC?
f, =n exp| —
a | 2ng,T 2K, T

After calculations, we found that

(43\/;:31(& )(SHquTuTb\/;)
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o=
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BbzE BbZE ﬁbZ% Bb2f
o 24Vr'K )
(X4|2=
(ebnaana‘/Eﬁi) : 5T 2 3
I[B]] [I[B]}
B. B.
ab 24VnJKiA
O™
(e n anh\/;B:) 3 = - 3 T
Hﬁ]} [I(E] ]
b ﬁh
3 3
2 2 2\2
o= 12VK, [27: Tb] 1{[33)
2 (eanbnaTbx/Eﬁi) m, i

b b
Wwith:  f3, :[;1; j and [, :[;nTbJ

Here m,,n,,V ande, are respectively the mass,

the density of particle a, volume of the system and the
charge of particlea .

The state of the plasma after a short transition time
remains close to the local plasma equilibrium. For this
reason, the local plasma equilibrium will be a reference
state. The distribution function can the conveniently be
written in the form: [17]

f* =1 +1 (24)

With ff1 is a deviation of distribution function, and then
can be expanded in a series of irreducible Hermite
polynomial as
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fla — Zha(ZnJrl)HEZnH) (V)f(;i (V) ©5)
n=0

a(2n+1) (2n+1)

r

With h the hermitien moment and H the

irreducible Hermite polynomials
We limited in the 13 Moment approximation (n=1) so

£ = (RO - O ) £ (26)

) = 3B,C
aw _ |1 2
AIld Hr _\/;Bac[z(ﬁac) 5:|

We derive a relation between the heat flux and the
hermitien moments in order to determine the
dimensionless equations of fluxes

1
a 1(m, ) a
hr(l) — _( a J _]r (27)

1
2
o-for3fe e

Where hj(l) and h?(s) are respectively the dimensionless

With

particle flux and the dimensionless heat flux of particle a

(& = e.i.]).

The evolution equations of the fluxes j and q have the
forms

0. =0, (e, JCtHdC) (29)
0.q" =0, U[;macz —ZKBTijade (30)

By considering the equations (26) and (27), the equations
(28) and (29) can be written

a

SN RIS LU ¢ LU LIPS WU - S T
m,c

o h'™ +h') =G0 4 S pip (3
m,C

a

Where T" the relaxation time of particlea, B the
magnetic field.

With Gf(a) and G:(3) are the source term related to the

thermodynamic forces by relation

r a n T m

a a a a

b
GV =1 i[m“j [ ! Vr(nuTa)+&Erj (33)
m,

T m

a a

5(m % 1
G =—1 —[ j —V.(T) 9

Considering equations (12) and (13) the evolution
equations of particle and heat flux has the form

0" =Y (ki"q® +k3j") (35)
b=e,i
09" =Y (ki"q" +kjbjb) (36)
b=e,i

So the dimensionless equations of particle and heat fluxes
in parallel direction become:

o =Y (kP +kent) e

b=e,i

onY =Y (k*nP +kh) )
b=e,i
With:

1

2
oo Sy (MDY
2n, m,T,

K =nb(maTb] K
na mbTa

1
k'}ab _ \/EET‘] m, T, |2 kgb
2n, m, T,

. T,
k:b:nb{ma b] k:b
na mbTa

0=

IS

N =

The dimensionless evolution equation (31) of particle
flux in parallel direction became

a a(l a(l a(l
voh +hi) =G (39)
Where the term of magnetic field vanish

For electrons (e), the equation (39) become
o +hi) =G (40)
The expression of electron relaxation time 7% is [19]

3mT)? (41)

A —

427Z%"n, In A

3/ (T +T)A
Where |n A:]IILZ')D the coulomb logarithm,
Ze

and Ay is the Debye length.
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Teﬁthre(l) in equation (40) by its

expression from equation (37), we find:

We replace

T Z k>hD + kM) +he® =GEY (42
b=e,i
This is equivalent to:

7K, 2he® 4+ 22k e + 2k i) + 20k + he D (43)
-Gy
Considering Fourier transformed
b(l) _ ; b(1)
oh)” =iwh;
b(3) _ ; b(3)
o.h” =liwh;
We place in the asymptotic limit where we neglect athr ,

with we take @ = 0, the evolutions equations (43) reduces
to

e(l) _ jeeq~e(l) ee~e(3) ei ~i(1) ei ~i(3)
h// I—IG// + 3G// +L11G// + 3G// (44)

Similar for ions (i) we determine h/i,(l)

hl(l) LllelGe(l) + L13Ge(3) + L1 Gl(l) + L1i3 |(3) (45)

The L?ja coefficients with (a=e,i and i=1 j=1,3) are the
pure transport coefficients and L?}b (a, b=-e, i) with (a #

b)) the mixed transport coefficients.

flux we develop now the
flux of

Similar of particle
dimensionless evolution equation of heat
multispecies of plasma so we have

he(3) LeeGe(l) + eeGe(3) + L(;l G/I/(l) + L§|36|(3) (46)
i(3) _ e(l) e(3) .(1) i ~i(3)
h// - L3 G// + L33G + L3 G L33G// (47)
Identification of the transport coefficients

The transport matrix L;b (whose coefficients are the

transport coefficients) has the characteristic Onsager
symmetry, which reduces here to the simple matrix

b b
symmetry i— L?i s0

The pure transport coefficients have the form

el 'ee
ee: 1 ee:_ 4 kl
TolertkE S
il ii
i 1 L =— k, _
Ly, = il i ’ 137 i i
1+7'k, 1+7'k,
o1
Lk

With the expression of ion relaxation time is

3m/27 %2
T 42nz% n InA

Where my;, Z; and Tjare respectively the mass of ion, the
charge and the ion temperature.

(48)

The mixed transport coefficients

ey, 'ei ey, 'ei
Lo _ 7°k, Lii__ 7K,
11— ' 1~ '
1+, 1+ 7%,
e, 'ei
Lgi _ TkS
3_ '
1+7°k

4. The perpendicular transport coefficients of
plasma

In this paragraph we study the transport phenomena in
presence of a constant magnetic field (B) where the
particles (electrons (), ions (i)), move perpendicular to the
magnetic fields.

B is parallel to the Z axis so we project the
dimensionless evolution equations in the x and y direction

For particle fluxes
We determine now the dimensionless evolution

equation of particle flux of multispecies of plasma so we
have

h:(l) — L?eGe(1)+ egGe(3)+L<:ilG)i((1)+ ei}GlG)
+( E)he(l) 49)
m.C
h;(l) L?eGe(l)-i-LBGeG)-FL?IGI(D-F e|G|(3)
—eBr, (50)
+(——h
m,C
We suppose
e,Br e,B
X, =——"2 |, X, =Qr, With Q =-2
m,C m,c

is the Larmor frequency of species a, a=(e,i) and B is the
magnetic field

After introducing (50) in (49) we use

For electrons

ee Lee L1
he® — LG 413 GO 4 1 Gl(l)
A O A B G B
LS gio L geo L o) 4 L\ gio
+1+]§< & 61+>1<st e l;e S 1+>1<le¥ ’

L$3 GI(3> (51)
el Xe
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ei
he<l> L11 GE(I) L13 E(3>+ L11 Gi(l) L13 I<3>
y

1+xE S ES'S Gy 1+x2 7 1+x% G
—X 1 GE(I)_X LTZ Ge(3)_xe L?l Gi(n_
O PO 1+x2
ei
X —5G (52)
1+X;
Forions
hO = 11 Ge(l) |-'1e3 Gem |—'1I1 Gi(”
N e 1+X 1+x
n |-|1|3 G® 4 x L1 Ge(l) X L13 GO 4y Li1i1 Gi 4
1+x '1+I "lext Y laxt
[
X 13 Gi®) 53
T+x (33)

i
hi(l) 11 [ L13 Ge(3) Lu I(l) L13 I(3)

A B N ES'% 1+x° Sy 1+x Gy
-, anG:(l)_i L13269<3)_Xi anGiX(l)_

1+ X 1+X 1+

X7 -I:;Z G (54)

For heat fluxes

Similar of particle flux we develop now the

dimensionless evolution equation of heat flux of
multispecies of plasma so we have
e3) _jeepqe(l) ee ~e(3) ei ~i(l) ei ~i(3)
hx _L3G + SG +L31Gx +L336x
55
( e)he(B) ( )
m.C
e(3) __ jeee(l) ee ~e(3) ei ~i(l) ei ~i(3)
h =Gy + LGy + L5,G,” + LGy
(56)

(—eBz'e )h:(”
m,C
After introducing (56) in (55) we use

For electrons

he(}) L&l GE(1)+ L33 Ge(3)+ LSl Gl(l)

1+ x 1+x 1+X;

I-e;z GIO) LSI GE(1)+X Lsz GE(3)+X inl Gi(l)+
B +x e1+xe2 S T A T i
xelii &

L GO 4 L5 G“)+ LS, G'“’+ L5 G'“’
hj* 1+x N B 1+% 1+%
-X Liel Ge(l) L33 Ge(3) L31 Gl(l)
e X X
1+% 1+ 1y X
ei
. G (58)

e 2
1+x

For ions

him L;] Ge(1>+ L;z GE(3>+ I-n Gl(l)
1+ x 1+x 1+x

L33 G'(3)+X| Lll GE(1)+X L33 GE(;)-#X L31 GI(I)+
+

1+x

LSS GIO) (59)

1+x
hi(3) L%l e(l) L33 G€(3) L%l I(l) L%} |(3)
Yoo+ x Gy 1+x Yooy Gy 1+ Gy
L G —x L GO L, G _

1+x "1+, +x T

L~
x. —>—=G 60

5. Result and discussion

In Figs. 1-4 we plotted the perpendicular electrical
conductivity, the thermoelectric conductivity, and electron
and ion thermal conductivities as function of %, (= = &,1).

25

[
@

Electrical conductivity

I3
@

Fig. 1. Perpendicular electrical conductivity
as function of .

This plot show that the electrical conductivity
decreases with increasing of x,

Electron thermal conductivity

Fig. 2. Perpendicular electron thermal conductivity
as function of .

We notice that the perpendicular electron thermal
conductivity decreases with increasing of .
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Fig. 3. Perpendicular thermoelectric conductivity
as function of .

We notice that the perpendicular thermoelectric
conductivity increases with increasing of ;.

w
w o

N
@

N
o

lon() thermal conductivity
N

"

o
@

o

1 2 3 4 5 6 7 8 9 10
Xe

Fig. 4. Perpendicular ions thermal conductivity
as function of x;.

o

In this curve we plotted the perpendicular ions
thermal conductivity as function x; of. This plot shows
that the perpendicular ions thermal conductivity decreases
with increasing of x;

The perpendicular transport coefficients are
monotonously decreasing function of x; . So for a very
strong magnetic field, the particles would stick to the field
lines, and there would be no transport in any direction
perpendicular to (B). This situation is opposed by the
collisions the latter make the particles jump from one field
line to another, thus making a perpendicular transport
possible. In the perpendicular direction the collisions favor
the transport thus for large values of the parameter
X, =€) 7, ie. for large magnetic field the
coefficients are decreasing functions of x;. This situation
is clearly illustrated in Figs. 1-4.

6. Conclusion

In this paper we have been interested to calculate by
Extended Irreversible Thermodynamics the transport
coefficients like electrical and thermal conductivities after
developing transport equations of dissipative fluxes like
particles and heat fluxes of multispecies plasma (electron
and ions).

In absence of magnetic field all the transport
coefficient are proportional to the relaxation time this
important characteristic can be easily understood. It
implies that as the collision frequency increases the
transport coefficients decrease in order words, the
collisions tend to oppose the transport of matter and
energy; they act as an obstacle to the free flow of these

quantities. This result is in perfect agreement with kinetic
theory result [20-21].

The asymptotic perpendicular transport coefficients
are proportional to the collision frequency this property
vividly illustrates that the collisions oppose the parallel
transport but favor the perpendicular one. It may be said
that in plasma in presence of a constant magnetic field,
when the collision frequency is increased

And the equality such coefficients, which has been
obtained here from purely EIT, is supported by kinetic
theory.
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